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ABSTRACT 
 
 To improve computer aided diagnosis (CAD) for CT colonography we designed a hybrid 
classification scheme that uses a committee of support vector machines (SVMs) combined with a genetic 
algorithm (GA) for variable selection.  The genetic algorithm selects subsets of four features, which are 
later combined to form a committee, with majority vote for classification across the base classifiers.  Cross 
validation was used to predict the accuracy (sensitivity, specificity, and combined accuracy) of each base 
classifier SVM.  As a comparison for GA, we analyzed a popular approach to feature selection called 
forward stepwise search (FSS).  We conclude that genetic algorithms are effective in comparison to the 
forward search procedure when used in conjunction with a committee of support vector machine classifiers 
for the purpose of colonic polyp identification.   
 
Key Words: genetic algorithms, support vector machines, feature selection, forward stepwise search, 
computer aided diagnosis, virtual colonoscopy. 
 
 
 
 

1. INTRODUCTION 
 

1.1 Computer Aided Diagnosis  
 

Colon cancer is the second leading cause of cancer deaths in the US, and research for the 
development of computer aided procedures for screening patients for colonic carcinoma has grown as a 
result of the recognized disadvantages that accompany the current standard procedure, the colonoscopy.  
Computer aided diagnosis (CAD) combined with computed tomographic (CT) colonography, is an 
alternative.  In order for an alternative screening procedure to prevail it must be both sensitive and specific. 
There is an ongoing effort by several institutions to develop classification schemes that optimize the 
performance of CAD methods for colon polyp detection.  Summers et al. [1] describes recent work on a 
version of computer automated polyp detection that uses geometric and volumetric features, acquired from 
the CT data, as the basis for polyp identification.  The software first segments the colon using a region 
growing algorithm, after which, regions of interest along the colon wall are identified.  A total of 80 
different quantitative features are currently calculated for each polyp candidate, but not all these features 
are eventually useful.  Classification of the candidates is provided by a committee of trained support vector 
machines (SVMs), each of which uses a four feature input vector.   
 
1.2 Polyp Classification   
 
 An essential reference for classification, statistical learning machines, and support vector 
machines (SVMs) in particular, is Hastie et al. [2].  Additional material can be found in Cristianini & 
Shawe-Taylor [3] and Schölkopf et al. [4]. Consider first constructing an SVM based on the original data, 
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which consists of N pairs (x1, y1),(x2 , y2 ),...,(xN , yN ) , for p-dimensional features (predictors) xi ∈ ℜ p  and 
outcomes (polyp, nonpolyp) yi ∈ {+1,−1}. 
 
 
Define a linear decision boundary (hyperplane) by 
 
 {x : f (x) = xTβ + β0 = 0},  
 
where β is a unit vector β =1.  One can define a classification rule based on f(x) through 

 
 G(x) = sign[ f (x)] 
 
such that for the test pair (x,y),  the observation y is declared a polyp if G(x) > 0, and a non-polyp if G(x) ≤ 
0. We observe that f(x) is the signed distance from the data point x to the hyperplane defined by f(x) = 0. 
We define the margin, C, for the SVM to be 2C = 2 / β .   

To place the SVM scheme in a larger context, we note that the optimization problem can be re-
stated as a penalized likelihood problem, such that  
f (x) = xT β + β0  solves the problem 

 

 minβ,β0
[1− yi f (xi )]+i=1

N∑ + λ β 2
, 

 
 where λ =1/2γ ,  and the subscript “+” denotes the positive part of the function. This has the general form 
of loss function + penalty function. 
 
 The optimization problem also has an elegant statement in terms of reproducing kernel Hilbert 
spaces ([2]; pp. 377-384), and the mathematics of the subject is rich and well-studied.  In this context the 
penalty function above can be generalized, and many choices are then available for the kernel K, among 
which are polynomials of user-specified degree d, radial basis functions, or weighted hyperbolic tangents 
(so-called neural network kernels). Using alternative loss functions leads to different classification 
schemes: the binomial log-likelihood generates the logistic regression scheme, and squared-error loss leads 
to a penalized linear discriminant decision engine [2]. 

An important further extension of the SVM architecture is through the use of functions, hj (x),  j = 

1, 2, . . . , M, of the original data vector  x. It is possible that such functions transform the problem into a 
nearly linear one in a sufficiently high dimensional space, and thus that the decision boundary can be easily 
found. We chose to use degree two polynomial functions of the data, thereby using quadratic kernels in the 
algorithm.  
 
 
1.3 Feature Selection 
 

Pattern recognition relies on the extraction and selection of features that adequately characterize 
the objects of interest.  The task of identifying the features that perform well in a classification algorithm is 
a difficult one, and the optimal choice can be non-intuitive; features that perform poorly separately can 
often prevail when paired with other features.  The filter approach to feature selection tries to infer which 
features will work well for the classification algorithm by drawing conclusions from the observed 
distributions (histograms) of the individual features.  However, here we see that the histograms give little 
insight into the separation between polyps and non-polyps.  In Figure 1, are the histograms of four features 
that nonetheless combine to form a good classifier.  Clearly the correlation structure of the data is 
responsible for the success of the joint classifier, and a good classification scheme will attempt to utilize 
this structure.  
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_____________________________________________________________________________________ 
 

Polyps                Nonpolyps 
 

      
(a) Maximum Average Neck Curvature (cm-1)                            (b) Wall Thickness (cm)  

      
             (c) Volume (cc)                                         (d) Average Volumetric Gaussian Curvature (cm-2)  
 
 Figure 1 Histogram plots showing the frequency of polyps (black) and nonpolyps(white) for four features.  
Together these four features perform well when used jointly in the support vector classifier, but 
individually provide no information regarding separation.  
 
___________________________________________________________________________________ 
 

Another technique, known as wrapper feature selection [5], uses the method of classification itself 
to measure the importance of a feature or feature set.  The goal in this approach is maximizing the predicted 
classification accuracy.  This approach, while more computationally expensive, tends to provide better 
results than the simpler filter methods [6]. 

Recent work in the field of pattern recognition explores the use of evolutionary algorithms for 
feature selection [7,8,6,9,10,11], and  genetic algorithms (GAs)are one type of evolutionary algorithm that 
can be used effectively as engines for solving the feature selection problem.  Feature selection using genetic 
algorithms has been studied and proven effective in conjunction with various classifiers, including k-
nearest neighbors, and neural networks [8,9,12].  For the research of colonic polyp recognition, with its 
continually growing list of possible features, it is important to have an efficient and robust feature selection 
algorithm.  The objective of this study is to determine if GA offers a practical approach to feature selection 
for our data and classification techniques.  We compare the results obtained by GA with a forward stepwise 
selection (FSS) algorithm.     
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2. METHODS 

  
2.1 Genetic Algorithms 

GAs are designed to simulate the evolutionary processes that occur in nature [11,13].  The basic 
idea is derived from the Darwinian theory of survival of the fittest.  Three fundamental mechanisms drive 
the evolutionary process: selection, crossover and mutation within chromosomes. As in nature, each 
mechanism occurs with a certain probability, allowing for some randomness.   Selection occurs on the 
current population by choosing the most-fit individuals to reproduce.  Reproduction, then, can result in the 
crossover and/or mutation of parent genes to form new solutions.  The ratio of heuristic and stochastic 
decisions, at best, creates a natural balance between survival and evolution. 

 For each generation of the GA, individual solutions are evaluated using a fitness function.   The 
evaluation method is a very important component of the selection process since offspring for the next 
generation are determined by the fitness values of the present population.   Figure 2 provides a simple 
diagram of the iterative nature of genetic algorithms.  The generational process ends when the user defined 
goal is reached.  In most cases, the number of generations is a constant set by the user. 

 
 
There is some variability introduced by 

the probability parameters and functions 
associated with GAs.  Function variations range 
from initialization techniques to additional 
evolutionary functions.  Efforts directed toward 
analyzing the effects of parameter variation give 
us some insight into the types of parameter 
settings that work best in certain situations [14].   
The parameters for the designed GA, including 
population size, probability of crossover and 
mutation, and selection strategy, were 
determined manually (Table 1).   

The major design components of the 
GA include the initialization process, the design 
of the evolutionary functions, and an objective 
fitness function. 

 
Initialization:  Conventional feature 

selection allows for variability of both the 
features and the size of the feature vector.  
However, the search space can be reduced by 
using heuristics and/or constraints that 
accompany the problem [5].  It has generally 
been observed that when more features are used 
for classification, more training samples are 
needed [15].  Our data set, while one of the 
largest of its kind, still consists of a relatively 
small number of training samples.  Through our 
experience it was determined that the SVMs 
functioned well with sets of four features.  We 
held the feature set size constant to effectively 
reduce the search space and increase the 
computational efficiency of the genetic 
algorithm.  100 chromosomes were initialized by 
random variable selection, and were encoded as 
four digit integer vectors.   

 

 
 
Figure 2 Flow diagram depicting the 
evolutionary process that a genetic algorithm 
follows. 
 

 
Population Size 100 
Tournament Selection Size 10 
Probability of Crossover 0.90 
Probability of Mutation 0.10 
Number of Generation 20 

 
Table 1. A list of the parameter settings used for 
the GA 

EVALUATE 

CROSSOVER 

SELECTION 

MUTATION 

INITIAL POPULATION 
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Functions:  Genetic operators are designed to build optimal feature sets by evolving and 
interchanging sub-optimal sets.  We defined the evolutionary process using the following functions, 
tournament selection, uniform crossover, and standard mutation.  Tournament selection operates by 
randomly selecting a set number of candidates, from which the two fittest chomosomes survive.  The 
survivors, called the parent chromosomes, are then subjected to crossover and mutation.  Uniform 
crossover uses a randomly generated binary bit mask to determine which genes (features) are to be crossed.  
Mutation occurs, with a very low probability, on one or more of any of the alleles within a candidate.  If the 
feature is chosen to mutate it has equal probability of becoming any of the remaining features.  The 
resulting two chromosomes are passed to the next generation for evaluation, and the cycle is repeated until 
the population is replenished.  Figure 2 illustrates the evolution of two child chromosomes.  
 

Feature Box

1.PopulationRandom 
selection with 
replacement 6937716 

2457145 

317426 

69162280

1537452

2.Evaluate Fitness

.21

.46

.13

.54

.08

Random 
selection 
without 
replacement

2457145 

69162280

1537452

3.Tournament Selection

tournament size =3Rank

1

2

3

69162280

2457145 

4.Uniform Crossover

Probability = 0.9

0010Mask

Parent 1

Parent 2

6916180

24572245 

Child 1

Child 2

Select top 2

5.Mutation

Probability = 0.1

.89.02.67.35

6950180

24572245 

.15.45.98.22

6916180Send Child 
Chromosomes to the 
next Generation

24572245 

 
Figure 3 Genetic algorithm sequence using a population of 5, tournament selection, uniform crossover, and 
standard mutation 
 

Evaluation:   To evaluate the feature set candidates we use the predicted accuracy of the classifier.  
Debate over how to best predict the accuracy of a particular classifier is covered in the statistical literature 
[16,17].  Cross-validation, bagging, and smoothed leave one out are some of the error estimate methods 
commonly used.  For the purpose of this experiment we chose 10-fold cross-validation (10xCV) applied to 
the set of true positive detections, which works by holding out a portion of the data for testing, (ten percent, 
in 10xCV), and training on the remaining data.  This process is repeated 10 times, each time leaving out a 
different portion of the data, such that each case is tested exactly once.    The test results provide us with a 
sensitivity measure.  To calculate specificity, we withheld a randomly selected subset of 100 false positive 
detections for training, and tested on the remaining 700 false detections.  We calculate sensitivity, 
specificity and combine both measurements to get an overall estimate of fitness.    
 

 
2.2 Forward Stepwise Search Algorithm 

The forward stepwise search (FSS) algorithm is a classic feature selection technique.  The pitfalls 
of this method include a high susceptibility to getting trapped by local optima, and a one track process that 
easily discards a feature entirely after a single consideration of its usefulness.  However, since variations of 
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this method are still widely used in much of the literature on variable reduction [15,18,19], it is important to 
compare its performance with that of the GA.  One method of FSS begins by selecting the single best 
performing feature as a seed.  It then steps through each subsequent feature, adding it to the set if it 
improves the accuracy measurement, and discarding it otherwise.   Each feature has only one chance to 
survive, which limits the possible combinations.  For the purpose of our experiment, the algorithm was 
slightly modified.  Once the feature set size reaches four features, additional features are evaluated by 
substituting them in for each feature in the set, one at a time.  If the new variable improves the predicted 
accuracy the old variable is discarded.    
 

3. SETUP AND RESULTS 
 

 The dataset used contains 207 case studies, with a total of 91 large polyps ( >=1cm), and 33 
medium polyps (.5-.9cm).  CT colonography was performed using a single detector helical CT scanner.  
Each patient was scanned in the supine and the prone position.  Using the colonoscopy report as the ground 
truth, a trained observer, under the supervision of a radiologist, manually identified the polyps on the CT 
scans.  A preliminary filter generated a total of 129 true positive detections polyp (multiple detections may 
correspond to the same polyp) and 2,684 false polyp detections.   There are 80 features calculated for each 
detection.  Examples of these features include area, curvature, region density, standard deviation of region 
density, and wall thickness.  

A few basic results are observed here.  The comparison of the GA with FSS demonstrates the 
stability of GA.  We observe that genetic algorithms are a more consistent method for selecting optimal 
feature subsets.   This is shown by the results of running each algorithm twenty times and observing the 
differences in the best feature set selected each time.  In figure 4 we can clearly see that there are a handful 
of features that GA repeatedly identifies, whereas FSS is relatively inconsistent.  It is not required that GA 
will always find the same feature set, but we can better interpret the variable’s importance from its 
consistent selection within the GA scheme.  On the other hand, it is hard to draw any conclusions 
concerning variable importance by plotting the performance of FSS.   
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 Figure 4  Frequency of feature selection over 20 runs for the GA (top) and FSS (bottom). 
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Table 2 gives the average sensitivity, specificity, and overall accuracy of the base classifiers 
selected over all 20 runs, along with standard errors. This comparison demonstrates a statistically 
significant benefit of GA over FSS.  On average, GA was able to significantly increase the specificity of 
the classifier without reducing the optimal sensitivity found. 

 

Table 2 (average over 20 runs) 
 
    
Figure 5 shows the evolutionary plots of a single run of the GA and FSS.  Plotted for the GA is the 

overall predicted accuracy of the best feature set for each generation.  Plotted for FSS is the overall 
predicted accuracy at each step.  The initial improvement made by the GA is noticeable, and a consistent 
upward trend is observed.  On the other hand, the fitness value of the FSS algorithm has no distinguishable 
point of improvement.  Furthermore, in this instance of FSS we can see a point at which the fitness 
decreases for some time.  This is an indication that FSS is easily susceptible to the variability that occurs in 
error estimation (for further information see [16]).   

 
 

 
 

 
 

Figure 5 Shows the evolution of the best overall accuracy values for GA and below shows the evolution 
of the fitness values for forward stepwise search. 
 

 
 
 

 Sensitivity ± std error Specificity ± std error Combined  ± std error 
Genetic Algorithm 80.6% ± 0.8% 69.4% ± 0.7% 75% ± 0.4% 
Forward Stepwise 78% ± 2.2% 51.1% ± 3.6% 65% ± 1.1% 
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4. Discussion and Conclusion 
 

We have developed a genetic algorithm for variable selection to be used in the case of colonic 
polyp detection.  This method combines stochastic and heuristic techniques to evolve to an optimal feature 
subset, and we compared its results to a standard forward stepwise search algorithm. 

The results of our experiments support the use of genetic algorithms over forward stepwise search 
for feature selection in computer-aided polyp detection.  Our work suggests that genetic algorithms are 
better for interpreting the feature space since they consistently find groups of variables that yield better 
results.   We also find that, on average, the GA is able to increase the specificity of the classifier while 
maintaining the sensitivity, which plays a significant role in the advancement of CT colonography. 

Colonic polyp detection using computer-aided diagnosis will be greatly improved by the discovery 
of well-defined features and optimal feature sets.  The process of feature extraction is ongoing.  As new 
features are introduced, a reliable feature selection algorithm is needed to provide an efficient method for 
deciphering the interactive, highly correlated nature of the many features. 
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